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Abstract 

It is proved that an eigenvalue pairing theorem applies to the molecular graphs 
associated with M6bius non-alternant hydrocarbons that contain exactly two symmetry- 
related odd-membered rings, one of which is M6bius (i.e, has the equivalent of precisely 
one edge weighting of - 1  somewhere within it) and the other of which is Hackel (i.e. 
may be considered to have all its edge weightings +1). 

1. General  introduct ion 

The much celebrated Pairing Theorem of Coulson and Rushbrooke [1,2], which 
was first formally proven some fifty years ago, continues to spark considerable 
interest within the chemical community [3]. In its original form, the Theorem 
related to so-called alternant hydrocarbons - that is, to hydrocarbons in which the 
carbon atoms could be consistently labelled or "starred" in such a way that every 
other carbon atom in the carbon skeleton would bear a star, and that no two "starred" 
atoms would be directly bonded together via a carbon-carbon "sigma" bond. The 
"pairing" part of the Theorem states that the Jr-electron energy levels of all alternant- 
hydrocarbon species are symmetrically distributed in complementary "plus-minus" 
pairs about the zero energy level. The same Theorem may be expressed in slightly 
different, but equivalent, language by making use of graph-theoretical concepts. 
The Theorem then becomes the following: any conjugated hydrocarbon possessed 
of a bipartite molecular graph will have eigenvalues that exist in positive and 
negative complementary pairs about the zero eigenvalue. The various elaborations 
of the Theorem that have been advanced since its initial publication have recently 
been reviewed in this journal by two of the present authors [3]. 
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In addition to its considerable extension and reformulation, the Pairing Theorem 
has also been shown to apply in a wide range of different chemical contexts [4]. 
For instance, the Theorem is now known to hold for many species other than 
altemant hydrocarbons. As examples, mention may be made of both positive and 
negative hydrocarbon ions [5], various classes of hetero-conjugated molecules such 
as the triazines [6] or the inorganic cumulenes [7], high-spin hydrocarbon and other 
systems [8], and chemical species having a MObius-strip type of topology [9, 10]. 
It is on the latter that we focus attention here. Such MObius species were defined 
by Heilbronner [11] as cyclic arrays of orbitals in which there is an odd number 
of sign inversions because of negative overlaps between adjacent zr-orbitals of differing 
sign. Reviews that have considered the applicability of the Pairing Theorem to 
MObius systems have been presented by Graovac et al. [12], Zimmerman [13], and 
Day et al. [10]. It is our purpose here to demonstrate how the Pairing Theorem can 
be further extended to a previously unstudied family of molecules of this type, 
namely, to a certain class of  non-altemant MObius hydrocarbons. 

2. Mathematical introduction 

For a graph G on N vertices, the Pairing Theorem may be stated in the following 
form [14]: 

Xiq-XN_i+l=O, for all i = 1,2 . . . . .  N, (1) 

where {x~}i= 1,2 ..... N are the roots (not necessarily distinct) of  the characteristic 
polynomial (o(G, x )  of  G. The latter may be represented in expanded form thus: 

N 
~)(G,x) = Z anxN-n,  

n = 0  

(2) 

where a n is the scalar coefficient of  the ( N -  n)th power of  x in the characteristic 
polynomial. It is then well known [14] that the Pairing Theorem, as stated above, 
is equivalent to the property that 

a n = 0, for all o d d  n. (3) 

The long observed fact [1 -4 ,  15] that the Pairing Theorem holds for bipartite graphs 
but not for non-bipartite ones may then be rationalised on the basis of  Sachs' 
Theorem [16-20] .  This is because odd-membered circuits (necessarily present in 
a non-bipartite parent graph G) imply the existence of Sachs graphs with an odd 
number of  vertices when Sachs' Theorem is applied, and such Sachs graphs inevitably 
make contributions to a n, where n is odd. (They m a y  also contribute to a n where 
n is even, but they m u s t  in general have an effect on a n when n is odd.) In the case 
of molecular graphs which have neither weighted edges nor weighted self-loops, the 
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Pairing Theorem holds if and only if the graph in question is bipartite [15]. In the 
case of certain edge-weighted non-bipartite graphs, however, these contributions 
from odd circuits, although individually non-zero, may sum to zero; in such circum- 
stances, the Pairing Theorem would then continue to hold, even though the graph 
in question may be non-bipartite. In this paper, we draw attention to one particular 
such special case by considering a class of edge-weighted (although vertex-unweighted) 
molecular graphs that represent certain MObius non-alternant hydrocarbons, to which 
the Pairing Theorem does apply. 

DEFINITION OF OUR CLASS OF MOLECULAR GRAPHS 

The graph G is defined to belong to the special class in question if it represents 
a conjugated hydrocarbon containing exactly two symmetry-related odd-membered 
rings, one of which is MObius (i.e., has the equivalent of precisely one edge weighting 
of -1  somewhere within it) and the other of which is Htickel (i.e.,oin the present 
context, it may be considered to have all its edge weightings + 1). Two odd-membered 
rings in a molecule, represented by the circuits R* and R** in the molecular graph 

• G, are said to be symmetry related if the subgraphs G - R* and G - R** are isomorphic. 
Some examples of such molecular graphs are illustrated in fig. 1. 

¢zF 
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-1 

Fig, 1. Some examples of molecular graphs repre- 
senting MObius non-alternant hydrocarbons of the 
type to which the theorem under discussion applies. 

THEOREM 

The Pairing Theorem applies to the molecular graphs associated with MObius 
non-alternant hydrocarbons of the class just defined. 
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3. Preliminaries on Sachs' Theorem 

Before proving this, we need to remind the reader of Sachs' Theorem for 
edge-weighted graphs [19]. In what follows, we make extensive use of the notation 
and the results of ref. [19], where what is here frequently referred to as a "Sachs 
graph" is there called a "mutation graph". The essentials are summarised below, but 
complete details may be found by consulting ref. [19]. Three types of mutation 
graphs were defined there [19]; since, however, we are here concerned with edge- 
weighted graphs, but not with vertex-weighted ones, consideration and definition 
of the loop graph L (fig. 2(a)) as a Sachs (mutation) graph (one of those invoked 
as such in ref. [19]) will not be required. By the term "Sachs (mutation) graph" in 
this paper, we shall mean only a subgraph of the parent molecular graph G that is 

-C) 
t. 

e---------e 
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1 # -  - ~""~I 

n-2 

Co 

Fig. 2. Sachs (mutation) graphs [19]. 

constituted solely from one or more complete graphs K 2 (fig. 2(b)) and/or any 
circuit graph Cn, 3 < n < N (fig. 2(c)). Sachs' Theorem and its extension to edge- 
weighted graphs [21,22, 19] then prescribe that 

and 

ao= 1 

a .  = ff'~ 2~CH)(--1)kCH~t(H), for n > 1. (4) 
tt ~ M. 

Here, M n denotes the set of all mutation graphs of G on n vertices, k(H) is the number 
of components in any one particular such Sachs graph H, c(H) is the number of circuit 
graphs in this subgraph, and t(H) is the traversal of H, defined as follows [19]: 
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(a) For our purposes, a traversal is a function defined on the following edge- 
weighted graphs: 

(i) the complete graph K 2, with edge weighting bij (fig. 3(a)): the traversal, 
t(K2) = bij bji = bZij; 

(ii) the circuit graph C n (fig. 3(b)): 

t(Cn) = b12 b23- • • bn- 1 n bnl- 

i bii j 

K2 

bnl 

2 b233 
b ~ ' , , ,  

1 f \ 
/ / 
n ~ / 

bn n- l~-o. . .  ~ _ . . . / /  

C° 

Fig. 3. The edge-weighted Sachs (mutation) subgraphs: (a) K z, (b) 6".. 

(b) We finally define the traversal t(H) of a mutation (Sachs) graph H to be the 
product of  the traversals of all the components of  H. 

In all that follows, it will be helpful for the reader to bear in mind that for 
the particular molecular graphs G that we are considering here, 'all edge weightings 
bij are + 1, with the sole exception of  the one edge in the M6bius ring that has a 
weighting of  - 1. Consequently, in these special cases, t(K 2) = 1 for all Sachs graphs 
K 2, because 

and 

t(K2) = (--1) 2= 1 

t(K2) = ( +  1) 2 = 1 

for the edge with weight - 1 ,  

for all the other edges. 

Furthermore, 
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and 

t ( C n ) = l x l x l x . . . x l  =1  

t ( C n ) = l x l x . . . x ( - 1 ) x l x . . . x l = - I  

for any Htickel circuit in G, 

for any MObius circuit in G. 

4. P roo f  of  the Theorem 

As we have already remarked, to prove the Theorem it is sufficient to show 
that a n = 0 whenever n is odd [14]. In all that follows, therefore, n is assumed to 
be odd. Since the parent graph G is taken to be edge-weighted but not vertex- 
weighted (so that, as was mentioned earlier, the loop graph L (fig. 2(a)) is not 
admitted as a possible Sachs graph in the present discussion), it follows that any 
mutation graph H on n vertices (n odd) must in general contain an odd number of  
odd-membered circuits among its components; in the context of  tile class of  molecular 
graphs we have defined for treatment in this paper, these considerations determine 
that each H ~ M n must contain exact(}, one odd circuit, be it either of  H/ickel type 
(in which every edge weighting around it is taken to be + 1) or of  MObius type (in 
which exactly one edge weighting is taken to be - 1 and all the others are assumed 
to be + 1). 

We denote by M2 the subset of  those Sachs graphs belonging to M n that contain 
a Htickel circuit and by M2* the subset of those Sachs graphs from within M n that 
include a MObius circuit. Then: 

M n =  M h U M  n ; M n ~ M  n = Q .  (5) 

There is a one-to-one mapping between M] and M~,*, described as follows. As a 
consequence of  the assumed symmetry of the molecular graph that was stated in its 
definition, for each H*6  M n such that H* contains an odd H~ickel circuit C* and is 
of  the form 

H*---h*®C*, 

there exists 

H** E M n 

such that H** contains the odd MObius circuit C** which is symmetrically equivalent 
to C* and is of  the form 

H**=h**®C** 

Here, h* and h** stand for Sachs graphs contained within the subgraphs G - C* and 
G - C**, respectively; h* and h** are chosen to be isomorphic. Furthermore, h* @ C* 
symbolises the Sachs graph having h* and the circuit C* as its components; h** (9 C** 
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analogously stands for the Sachs graph having h** and C** as its components. We 
note in passing that if h* and h** contain circuits, these must necessarily be even- 
membered. Then: 

Now, 

an = ~ ,  2c(m(-1)k(ltlt(H) 
HeM.  

: ~_. 2c(H*)(-1) k(n )t(H )+ 
tt* eM* H** eM** 

tt* eMn* 

because 

t(H*) = t(h*), t(C*), 

t(H**) = t(h**), t(C**), 

t(h*) = t(h**)= 1, 

t(C*) =-t(C**) = 1, 

and therefore 

t(H**) = - t (H*) ,  

whereas 

c(H **) = c(H*) 

and 

k(H**) = k(H*). 

Hence, eqs. (6) and (7) lead to 

an = O, for all n, as required. 

Z 2c(tl*)(-1)k(ft*)t( H * ) = -  ~.  
H** eM** 

" " * * "  k'tt**" *). 2 ct'l )(-1) t )t(H* (6) 

2c(n**)(--1)k(H**)t(H**), (7) 

[] 

5. Example 

We illustrate the theorem by giving as an example its application to the graph 
G in fig. 4, in which are also depicted all the Sachs graphs of G on an odd number 
of vertices. In the notation introduced in this figure, 
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M 3 = {H 1, H2}, 

M s = {H3,H4 . . . . .  HI2}, 

M 7 = {H13, H14 . . . . .  HI8}. 

Each Sachs graph Hi, i = 1, 2 . . . . .  18, assigned an even subscript belongs to M2, 
whereas each Sachs graph with an odd suffix belongs to M]*. In particular,  

M 7 = {H14, H16, H18 } and M 7 = {H13, H15, H17 }. Hence, for n = 7, the first sum 
on the r ight-hand side o f  eq. (6) is equal to 

tt* eM~" 

2c(II*)(--1)k(H*lt(H*) = (21 X (--1) 3 X (1 x 1 X 1) 

+ 2 1 × ( - 1 )  3 × ( 1 ×  l x  1) 

+ 2 1 × ( - 1 )  3 x ( l × l × l ) )  

The second sum on the r ight-hand side of  eq. (6) is 

Z 
tt** eM~* 

2c0t**)(-1)kCtl**)t(H**) = (21 x ( -1 )  3 × (1 x 1 x ( - 1 ) )  

+21 x ( - 1 )  3 x (1 x 1 x ( -1 ) )  

+ 21 x ( - 1 )  3 x (1 x 1 x ( - 1 ) ) )  

= + 6 ,  

and, consequent ly ,  

a T = 0 .  

It is s t ra ightforward to check in a similar  way that a 3 and a 5 are also equal  to zero. 
Appl icat ion o f  Sachs'  Theorem to calculate the coeff ic ients  a i, where i is even, can 
then be shown ul t imately  to give 

~(G, x) = x I° - 1 lx  8 + 37x 6 - 45x 4 + 15x 2 - 1 

as the characteris t ic  po lynomia l  o f  the graph G shown in fig. 4. It will be noted that 
this is an even polynomial  which,  therefore,  will have paired roots. The characteristic 
equat ion o f  G factorises to [23] 

(X 4 - 3X 2 + 1) (X 6 - 8X 4 + 12X 2 - 1) = 0, 
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and the explicit, exact eigenvalues of G may in this case be shown to be [23] 

x : + I  8 .......... + 4 #  sin [2lre/3 -3 (sin-1 ~187 ~ ) / 3 ]  , 

where e = 0, 1, 2, together with 

x = +  2 

This leads to the following eigenvalue list: 

+ 0.297483925, 

+ 0.618033989, 

+ 1.367676394, 

+ 1.618033989, 

:t: 2.457837382. 

6. Conclusions 

We have thus proved that the Pairing Theorem applies to the graphs representing 
conjugated hydrocarbons that contain exactly two symmetry-related odd-membered 
rings, one of which is MObius and the other of which is Htickel. We have clone this 
by the device of arranging for judicious cancellation of the several contributions to 
terms which, when they arise in an application of Sachs' Theorem, are required 
identically to be zero in order for an eigenvalue pairing to hold. The cancelling 
achieved in this way is, therefore, in a sense, an artificial one - it has been specifically 
contrived to occur. Consequently, we wish to emphasise that, in contrast to the 
circumstances that pertain to the original Pairing Theorem [1] applicable to alternant 
hydrocarbons, the eigenvalue pairing encountered here does not arise from any 
fundamental symmetry that enables partition of the graph's adjacency matrix into 
a particular, blocked form. From this, it follows that there is no reason to expect 
any special relationship between the eigenvectors belonging to paired eigenvalues, 
such as is evident when the original Coulson-Rushbrooke Theorem [1-4] is applied 
to alternant hydrocarbons. It is clear, therefore, that the present result is unlikely 
to be susceptible to proof by matrix-partition methods analogous to those employed 
by Rueclenberg [24], Cvetkovid [25] and one of us [15] when proving the standard 
eigenvalue Pairing Theorem [1-3].  



I. Gutman et al., Extension of the Pairing Theorem 365 

We also observe in passing that if a self-loop be considered as a ring of size 
1, a previous result of one of the present authors [26] can be understood as a special 
case of our current theorem. 

From a number of potential applications of the new result obtained here, 
mention should be made of MObius ~r-systems in the form of very long (so-called 
"infinite") strips. Many such systems - for example, the polyacenes and the poly- 
a renes-  are of considerable topical interest as possible starting points for conductors 
or semiconductors of novel type. It is well known that there exists a relationship 
between cyclic and extended linear ,r-systems within the framework of traditional 
Htickel Theory [27]. The band gap has in fact been shown [27] to be identical for 
cyclic oligomers and linear polymers composed of the same repeating units. For 
instance, from the well-established mnemonic devices of Frost and Musulin and 
others [28-30], it is possible to determine the orbital energies of [12]-annulenes 
by making use of the molecular orbitals of both the standard (Htickel) and M6bius 
topologies of the benzene ring. Since the procedure may be extended to infinitely 
large rings, the gaps in linear polymeric species are obtainable purely from a 
consideration of cyclic systems. Our theorem could thus be useful in shedding new 
light on the disposition of the energy levels in a number of polymeric molecules. 
Of special relevance in this context are those systems constructed from very large 
rings of non-alternant species possessed of MObius topology. When such rings 
become sufficiently large, they are ultimately equivalent to linear strips that consist 
of repeating units with one (or, in general, an odd number) of M0bius-type twists. 
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